Вселенной называется всё сущее на свете. Это и Земля, на которой мы живём, это и горы и моря, покрывающие её поверхность. Это наша Луна и наше Солнце и это бесчисленные звезды, пылающие над нашей головой.
«Мир» никогда не кончится: вселенная была и будет вечна в своём движении и развитии.


Планета Сатурн. Строение планеты сатурн


Путешествие по нашей вселенной: САТУРН

     Сатурн, как и его сосед Юпитер, состоит из водорода (96,3 %), с примесями гелия и следами воды, метана, аммиака и тяжёлых элементов. Внешняя атмосфера планеты кажется из космоса спокойной и однородной, хотя иногда в ее слоях образуются сверхмощные ветра и ураганы, которые похожи на большие вращающиеся пятна, подобные Большому красному пятну на Юпитере. Скорость таких ураганов может достигать местами до 1800 км/ч, что значительно больше, чем у на гиганте-Юпитере. Ветра и ураганы в основном бушуют в восточном направлении (по направлению осевого вращения). По мере удаления от экватора их сила постепенно ослабевает. Сатурн, как и все планеты-гиганты, состоит практически целиком из водорода, который под действием высоких давлений и температур переходит сначала в более жидкую фазу, а затем в металлическое состояния. Поэтому твердая поверхность  начинается только в верхней границы ядра планеты - примерно на расстоянии 47 800 км от начала видимой оболочки Сатурна. Чтобы добраться до ядра необходимо преодолеть путь сквозь всю газо-жидко-металлическую  оболочку планеты. Само ядро состоит из тяжелых элементов - камня, железа и возможно льда. По предварительным подсчетам, ядро Сатурна имеет радиус 12 500 км, а его масса в десятки раз больше массы Земли. Температура в центре планеты достигает 11 700 °C, а энергия, которая возникает в ее недрах - в 2,5 раза больше энергии которую Сатурн получает от Солнца. Ядро окружает толстый слой так называемого металлического водорода - около 18 000 км, давление которого колеблется в районе 3 миллионов атмосфер. При такой сжимающей силе молекулы водорода распадаются на атомы, электроны отщепляются, а сама молекулярная жидкость становится электропроводящей. Трудно точно сказать как выглядет  водород в жидко-металлической фазе. Ведь в лабораторных условиях его получить невозможно, для этого необходимо  создать давление в диапазоне от 300-900 ГПа, а увидеть водород в таком агрегатном состоянии на Юпитере и на Сатурне, не удавалось еще ни одному космическому аппарату. По мере отдаления от центральной части планеты давление падает и металлический водород постепенно переходит в жидкое состояние.       В отличии от планет земной группы, где магнитное поле образуется в недрах жидкого ядра, на Газовых планетах, таких как Юпитер, Сатурн, Уран и Нептун, собственная магнитосфера вокруг планеты образуется за счет циркуляции электротоков в слое жидкого металлического водорода. Магнитное поле Сатурна считается вторым по мощности (после Юпитера) в Солнечной системе. Его впервые обнаружила космическая станция "Пионер-11" в 1979 году, когда зонд приблизился к планете на расстояние 20 000 км. Магнитосфера Сатурна простирается почти на 1,5 млн. км от центра планеты (магнитное поле Земли всего на 25 000 км). В верхних слоях атмосферы Сатурна, вследствие взаимодействия магнитного поля с заряженными частицами солнечного ветра, возникают самые яркие полярные сияния в Солнечной системе.

 Структура внутреннего строения Сатурна

Водороно-гелиевая атмосфера - 3000-4000 км;

Жидкий водород - 26 000 км;

Металлический водород - 18 000 км;

Твердое ядро - 12 500 км

Полярное сияние над северным полюсом Сатурна. Сияния окрашены в голубой цвет, 

а лежащие внизу облака — в красный. Такие явления происходят за счет взаимодействия

частиц солнечного ветра с магнитным полем планеты

          Сатурн в Кольцах

    Еще в ХVII веке Сатурн считался планетой-загадкой. Галилей, наблюдая за Сатурном, заметил два подозрительных тела рядом с планетой. Он принял их за два спутника, которые расположены так близко к планете, что почти соприкасаются с нею. Через время, при повторном наблюдении он уже не видел этих тел, они как будто просто исчезли. Спустя полвека, благодаря  Христиану Гюйгенсу уже стало известно, что это вовсе не спутники, а огромное кольцо, опоясывающее планету вокруг экватора. Гюйгенс также предполагал, что само кольцо - не единое целое, а состоит из миллиардов мельчайших твердых крупиц.  В настоящее время, на изображениях, полученных зондами, видно, что на самом деле кольца образованы из тысяч колец, чередующихся со щелями. В их состав входят частицы льда и каменной пыли размером от миллиметров до нескольких десятков метром. Все они вращаются с бешеной скоростью (30-60 тыс км/ч) за счет гравитации Сатурна, образуя одно непрерывное Кольцо. Это похоже на вращение юлы, раскрученной с большой силой. Если на минуту остановить эту гигантскую юлу, то можно разглядеть в деталях строение Кольца. Некоторые частицы будут выглядеть маленькими песчинками, другие же - размером с 10 этажный дом. Само кольцо очень тонкое. При своей общей ширине (около 60-80 тыс км) его толщина всего каких-то 10-20 метров. Именно поэтому, многие века, считалось, что Кольцо Сатурна - абсолютно плоское.

     Внутренняя граница  Кольца начинается в 13 000 тыс км от внешних облаков Сатурна, а заканчивается на расстоянии 77 тыс км от планеты. Само Кольцо является не плотным. Расстояния между частицами может достигать нескольких километров. Поэтому пролетев сквозь Кольцо можно не встретится ни с одним его осколком. Если собрать все составляющие части Кольца в одно целое тело, то его диаметр будет не более 100 км, а масса - 3x1019 килограммов.

      Существует три основных кольца и четвёртое — более тонкое. Их принято обозначать первыми буквами латинского алфавита. Кольцо В — центральное, самое широкое и яркое, оно отделяется от внешнего кольца А щелью Кассини шириной почти 4000 км, в которой находятся тончайшие, почти прозрачные кольца. Внутри кольца А есть тонкая щель, которая называется разделительной полосой Энке. Кольцо С, находящееся ещё ближе к планете чем В, почти прозрачно.     В настоящее время изучение структуры Колец возлагается на межпланетную станцию "Кассини", запущенную в 1997 году и достигшую системы Сатурна в 2004. С ее борта было сделано множество снимков, более точнее определены размеры и толщина колец, их внутренний состав и т.д. Размеры Кольцевой структуры Сатурна Кольца Сатурна с расстояния 1,8 млн км под углом 30 градусов. Снимок сделан в 2006 году аппаратом "Кассини"Кольцо Сатурна состоит из миллиардов льдинок размером от 1 см до нескольких метров. Они движутся вокруг планеты с скоростью 50 000 км/ч, образуя непрерывный вращающийся диск

Исследование и изучение планеты  

      Впервые в истории, облет вокруг Сатурна совершил космический межпланетный аппарат НАСА "Пионер-11" 2 августа 1979 года. Максимальное сближение - 20 000 км выше максимальной высоты облачности планеты. С такого близкого расстояния были впервые более детально изучены кольца Сатурна и открыто новое - F кольцо. Были получены изображения как планеты, так и его спутников, однако их разрешение было недостаточно для того, чтобы разглядеть детали поверхности. В начале 80-х годов, после изучения Юпитера, к Сатурну отправились две космических станции "Вояджер-1" и "Вояджер-2". Во время прохождения по орбите было сделано ряд фотографий в высоком разрешении. Удалось получить изображение спутников: Титана, Мимаса, Энцелада, Тефии, Дионы, Реи. При этом, один из аппаратов пролетел около Титана на расстоянии всего 6500 км, что позволило собрать данные о его атмосфере и температуре. С помощью "Вояджер-2" были получены данные о  температуре и плотности атмосферы, а также обнаружена мощное магнитное поле вокруг Сатурна. В верхних слоях атмосферы наблюдались различные природные явления - штормы, вихри, ураганы и даже молнии. В 1982 году "Вояджер-2", совершив гравитационный маневр вокруг Сатурна, отправился в дальнейшее путешествие по Солнечной системе - в частности к Урану и Нептуну.       В 1997 г. к Сатурну была запущена межпланетная станция “Кассини-Гюйгенс”, которая после 7 лет полёта 1 июля 2004 г. достигла системы Сатурна и вышла на орбиту вокруг планеты. Основными задачами этой миссии, рассчитанной первоначально на 4 года, являлось изучение структуры и динамики колец и спутников, а также изучение динамики атмосферы и магнитосферы Сатурна и детальное изучение крупнейшего спутника планеты — Титана. По ряда исследований планеты и спутников, специальный европейский зонд “Гюйгенс” отделился от аппарата и на парашюте 14 января 2005 года спустился на поверхность Титана. Спуск продолжался 2 часа 28 минут. За это время аппарат установил наличие плотной атмосферы Титана, толщина которой около 400 км. Атмосфера спутника  состоит из азота и метана, а на поверхности "природный газ" за счет высокого давления переходит в сжиженное состояния, образуя целую океано-речную метановую систему.  C 2004 года по 2 ноября 2009 года с помощью основного аппарата “Кассини”  были открыты 8 новых спутников. В настоящее аппарат является искусственным спутником Сатурна и продолжает исследовать планету, в одну из его миссий входит изучение полного цикла сезонов Сатурна.

 Запуск межпланетной космической станции “Кассини-Гюйгенс” 15 октября 1997 года. 

Уже в декабре 2000 г. зонд совершил гравитационный маневра вокруг Юпитера и отправился в

сторону Сатурна, а в июля 2004 года были получены снимки Сатурна и его спутников

Аппарат “Кассини-Гюйгенс”. Его вес - 5,6 т, а высота и ширина - 6,7 м и 4 м соответственно. В качестве топлива используется энергия радиоактивного распада Плутония. С момента запуска и до настоящего времени,  “Кассини-Гюйгенс” провел в космосе 14 лет и 3 месяца

         

Солнечное затмение Сатурном 15 сентября 2006 года. Снимок сделан 

межпланетной станцией “Кассини” с расстояния 2,2 млн км

nashavselenaya.blogspot.com

Сатурн. Строение планеты - Планеты солнечной системы

У Сатурна, как и у Юпитера, имеется очень плотная атмосфера. На верхней границе его облачного покрова, заметно мало деталей и контраст их с окружающим фоном невелик. Этим Сатурн отличается от Юпитера, где присутствует множество контрастных деталей в виде темных и светлых полос, волн, узелков, свидетельствующих о значительной активности его атмосферы.

Установлено, что скорости ветров на Сатурне даже выше, чем на Юпитере: на экваторе 1700 км/ч. Число облачных поясов больше, чем на Юпитере, и достигают они более высоких широт. Таким образом, снимки облачности демонстрируют своеобразие атмосферы Сатурна, которая даже активнее юпитерианской. Метеорологические явления на Сатурне происходят при более низкой температуре, нежели в земной атмосфере. Температура планеты на уровне верхней границы облачного покрова, где давление равно 0,1 атм., составляет всего - 188о С. Интересно, что за счет нагревания одним Солнцем даже такой температуры получить нельзя. Расчет показывает: в недрах Сатурна имеется свой собственный источник тепла, поток от которого в 2,5 раза больше, чем от Солнца. Сумма этих двух потоков и дает наблюдаемую температуру планеты.

Космические аппараты подробно исследовали химический состав надоблачной атмосферы Сатурна. В основном она состоит почти на 89% из водорода. На втором месте гелий - около 11% . Отметим, что в атмосфере Юпитера его 19%. Дефицит гелия на Сатурне объясняют гравитационным разделением гелия и водорода в недрах планеты: гелий, который тяжелее, постепенно оседает на большие глубины. Другие газы в атмосфере - метан, аммиак, этан, ацетилен, фосфин - присутствуют в малых количествах. Метан при столь низкой температуре находится в основном в капельно-жидком состоянии. Он образует облачный покров Сатурна. Что касается малого контраста деталей, видимых в атмосфере Сатурна, то причины этого явления пока еще не вполне ясны. Было высказано предположение, что в атмосфере взвешена ослабляющая контраст дымка из мельчайших твердых частиц. Но наблюдения Вояджера-2 опровергают это: темные полосы на поверхности планеты оставались резкими и ясными до самого края диска Сатурна, тогда как при наличии дымки они бы к краям замутнялись из-за большого количества частиц перед ними.

По своему внутреннему строению Сатурн схож с Юпитером. Предполагается, что оболочка планеты состоит из жидкого водорода, который по мере продвижения к центру планеты переходит из жидкого в металлическое состояние. В центре планеты располагается железокремниевое ядро, с примесью льдов из метана, аммиака и воды.

происходит когда плоскость колец проходит точно через Солнце и боковая поверхность оказывается лишенной яркого освещения, либо когда кольца бывают обращены к наблюдателю ребром и выглядят как чрезвычайно тонкая полоска, видимая только в крупнейшие телескопы. Толщина колец, по современным данным, около 3,5 км. Она очень мала по сравнению с их диаметром, который по наружному краю кольца А составляет 275 тыс. км. Размеры частиц не определены окончательно. Радиоастронометрические наблюдения свидетельствуют о наличии в кольцах множества частиц размером не менее нескольких сантиметров. Не исключена возможность присутствия в кольцах Сатурна еще более крупных частиц, так же как и пыли. Инфракрасные спектры колец Сатурна напоминают спектры водяного инея. Однако в других частях спектра позднее была обнаружена особенность, не характерная для чистого льда.

kosmonavtika.net

Планета Сатурн

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ М.АКМУЛЛЫ» ПЛАНЕТА САТУРН /реферат по астрономии/ Выполнила:. ФМФ, 4 курс, 45 гр. Проверил: Плановский В.В. Уфа 2008

ОГЛАВЛЕНИЕ Введение…………………………………………………………………….…....3 1.                Общие сведения…………………………………………….……………...4 1.1.                     Параметры планеты……………………………………………….…....6 1.2.                     Внутреннее строение……………………………………………...…..6 2.       Атмосфера……………………….…………………………………….……...7 2.1.                     «Гигантский гексагон» ………………………………………….…….9 3.       Космические характеристики..………………………………………….....10 3.1.                     Магнитосфера…………………………………………………….…...10 3.2.                     Полярные сияния…………………………………………………......12 3.3.                     Инфракрасное свечение Сатурна..……………………….………….12 4.       Кольцевая система Сатурна……………………………………..……….…13 4.1.                     Открытие тонкой структуры колец…………….…………………....15 5.       Спутники Сатурна...……………………………..……………………….....20 6.       История открытий…………………………..……………………………....21 7.       Приложение………………………………………………………….………24 8.       Литература………………………………………………………….………..26

ВВЕДЕНИЕ В античной мифологии Сатурн был божественным отцом Юпитера. Сатурн был богом Времени и Судьбы. Как известно, Юпитер в своем мифическом обличии пошел дальше отца. В Солнечной системе Сатурну отведена также вторая роль среди планет. Сатурн второй как по массе, так и по размерам. Однако он позади многих и многих тел околосолнечного пространства по плотности. Сатурн, не желая смиряться с отставанием от Юпитера, обзавелся большим числом спутников и, главное, великолепным кольцом, благодаря которому шестая планета серьезно оспаривает первое место в номинации Великолепие. Многие астрономические книги на обложках своих предпочитают иметь именно Сатурн, а не Юпитер. Сатурн может достигать отрицательной звездной величины в период противостояния планеты. В небольшие инструменты легко разглядеть диск и кольцо, если оно хоть чуть развернуто к Земле. Кольцо из-за движения планеты по орбите меняет свою ориентацию по отношению к Земле. Когда плоскость кольца пересекает Землю, даже в средние телескопы рассмотреть его не получается: оно очень тонкое. После этого кольцо все больше и больше разворачивается к нам, а Сатурн, соответственно становится все ярче и ярче в каждое следующее противостояние. В первый год уже недалекого третьего тысячелетия в день противостояния 3-го декабря Сатурн разгорится до -0,45-й звездной величины. В этот год кольца максимально развернутся к Земле. Не слишком тяжело заметить также и Титан - самый большой спутник планеты, он имеет блеск порядка 8,5-й звездной величины. Из-за малой контрастности, облака Сатурна рассмотреть труднее, чем облачные полосы на Юпитере. Зато легко заметить сжатие планеты у полюсов, которое достигает 1:10. У Сатурна побывало 3 космических аппарата. Эти же АМС предварительно посетили Юпитер: "Пионер 11" и оба "Вояджера" 1.                ОБЩИЕ СВЕДЕНИЯ Сатурн, наверное, наиболее красивая планета, если смотреть на нее в телескоп или изучать снимки «Вояджеров». Сказочные кольца Сатурна нельзя спутать ни с какими другими объектами Солнечной системы. Планета известна с самых древних времен. Максимальная видимая звездная величина Сатурна +0,7m. Эта планета – один из самых ярких объектов на нашем звездном небе. Ее тусклый белый свет создал планете недобрую славу: рождение под знаком Сатурна издревле считалось плохим предзнаменованием. Кольца Сатурна видимы с Земли в небольшой телескоп. Они состоят из тысяч и тысяч небольших твердых обломков камней и льда, которые вращаются вокруг планеты. Период вращения вокруг оси – звездные сутки – составляет 10 часов 14 минут (на широтах до 30°). Так как Сатурн – не твердый шар, а состоит из газа и жидкости, то экваториальные его части быстрее вращаются, чем приполярные области: на полюсах один оборот совершается примерно на 26 минут медленнее. Средний период обращения вокруг оси – 10 часов 40 минут. Сатурн имеет одну интересную особенность: он – единственная планета в Солнечной системе, чья плотность меньше плотности воды (700 кг на кубический метр). Если бы было возможно создать огромный океан, Сатурн смог бы в нем плавать! По внутреннему строению и составу Сатурн сильно напоминает Юпитер. В частности, на Сатурне в экваториальной области также существует Красное Пятно, хотя оно и меньших размеров, чем на Юпитере. На две трети Сатурн состоит из водорода. На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты (в области ядра) температура порядка 20000 К. Всякий, кто наблюдал планеты в телескоп, знает, что на поверхности Сатурна, то есть на верхней границе его облачного покрова, заметно мало деталей и контраст их с окружающим фоном невелик. Этим Сатурн отличается от Юпитера, где присутствует множество контрастных деталей в виде темных и светлых полос, волн, узелков, свидетельствующих о значительной активности его атмосферы. Возникает вопрос, действительно ли атмосферная активность Сатурна (например скорость ветра) ниже, чем у Юпитера, или же детали его облачного покрова просто хуже видны с Земли из-за большего расстояния (около 1,5 млрд. км.) и более скудного освещения Солнцем (почти в 3,5 раза слабее освещения Юпитера)? "Вояджерам" удалось получить снимки облачного покрова Сатурна, на которых отчетливо запечатлена картина атмосферной циркуляции: десятки облачных поясов, простирающихся вдоль параллелей, а также отдельные вихри. Обнаружен, в частности, аналог Большого Красного Пятна Юпитера, хотя и меньших размеров. Установлено, что скорости ветров на Сатурне даже выше, чем на Юпитере: на экваторе 480 м/с, или 1700 км/ч. Число облачных поясов больше, чем на Юпитере, и достигают они более высоких широт. Таким образом, снимки облачности демонстрируют своеобразие атмосферы Сатурна, которая даже активнее юпитерианской. Метеорологические явления на Сатурне происходят при более низкой температуре, нежели в земной атмосфере. Поскольку Сатурн в 9,5 раз дальше от Солнца, чем Земля, он получает в 9,5 =90 раз меньше тепла. Температура планеты на уровне верхней границы облачного покрова, где давление равно 0,1 атм, составляет всего 85 К, или -188 С. Интересно, что за счет нагревания одним Солнцем даже такой температуры получить нельзя. Расчет показывает: в недрах Сатурна имеется свой собственный источник тепла, поток от которого в 2,5 раза больше, чем от Солнца. Сумма этих двух потоков и дает наблюдаемую температуру планеты. Космические аппараты подробно исследовали химический состав надоблачной атмосферы Сатурна. В основной она состоит почти на 89% из водорода. На втором месте гелий (около 11% по массе). Дефицит гелия на Сатурне объясняют гравитационным разделением гелия и водорода в недрах планеты: гелий, который тяжелее, постепенно оседает на большие глубины (что, кстати говоря, высвобождает часть энергии, "подогревающей" Сатурн). Другие газы в атмосфере - метан, аммиак, этан, ацетилен, фосфин - присутствуют в малых количествах. Метан при столь низкой температуре (около -188° С) находится в основном в капельно-жидком состоянии. Он образует облачный покров Сатурна. Что касается малого контраста деталей, видимых в атмосфере Сатурна, о чем говорилось выше, то причины этого явления пока еще не вполне ясны. Было высказано предположение, что в атмосфере взвешена ослабляющая контраст дымка из мельчайших твердых частиц. Но наблюдения "Вояджера-2" опровергают это: темные полосы на поверхности планеты оставались резкими и ясными до самого края диска Сатурна, тогда как при наличии дымки они бы к краям замутнялись из-за большого количества частиц перед ними. Данные, полученные с "Вояджера-1", помогли с большой точностью определить экваториальный радиус Сатурна. На уровне вершины облачного покрова экваториальный радиус составляет 60330 км. или в 9,46 раза больше земного. Уточнен также период обращения Сатурна вокруг оси: один оборот он совершает за 10 ч. 39,4 мин - в 2,25 раза быстрее Земли. Столь быстрое вращение привело к тому, что сжатие Сатурна значительно больше, чем у Земли. Экваториальный радиус Сатурна на 10% больше полярного. Поскольку Сатурн весьма сходен с Юпитером по своим физическим свойствам, астрономы предположили, что достаточно заметное магнитное поле есть и у него. Отсутствие же у Сатурна наблюдаемого с Земли магнитно-тормозного радиоизлучения объясняли влиянием колец. 1.1. ПАРАМЕТРЫ ПЛАНЕТЫ Эллиптическая орбита Сатурна имеет эксцентриситет 0,0556 и средний радиус 9,539 а.е. (1427 млн. км). Максимальное и минимальное расстояния от Солнца равны приблизительно 10 и 9 а.е. Расстояния от Земли меняются от 1,2 до 1,6 млрд. км. Наклон орбиты планеты к плоскости эклиптики 2°29,4'. Угол между плоскостями экватора и орбиты достигает 26°44'. Сатурн движется по своей орбите со средней скоростью 2,64 км/с; период обращения вокруг Солнца составляет 29,46 земных лет. Планета не имеет четкой твердой поверхности, оптические наблюдения затрудняются непрозрачностью атмосферы. Для экваториального и полярного радиусов приняты значения 60,27 тыс. км и 53,5 тыс. км. Средний радиус Сатурна в 9,1 раз больше, чем у Земли. На земном небе Сатурн выглядит как желтоватая звезда, блеск которой меняется от нулевой до первой звездной величины. Масса Сатурна составляет 5,6850∙1026 кг, что в 95,1 раз превосходит массу Земли; при этом средняя плотность Сатурна, равная 0,68 г/см3, почти на порядок меньше, чем плотность Земли. Ускорение свободного падения у поверхности Сатурна на экваторе равно 9,06 м/с2. Поверхность Сатурна (облачный слой), как и Юпитера, не вращается как единое целое. Тропические области в атмосфере Сатурна обращаются с периодом 10 ч 14 мин земного времени, а на умеренных широтах этот период на 26 мин больше. 1.2. ВНУТРЕННЕЕ СТРОЕНИЕ По внутреннему строению и составу Сатурн сильно напоминает Юпитер. В глубине атмосферы Сатурна растут давление и температура, и водород постепенно переходит в жидкое состояние. Чёткой границы, отделяющей газообразный водород от жидкого, по-видимому, не существует. Это должно выглядеть как непрерывное кипение глобального водородного океана. На глубине около 30 тыс. км водород становится металлическим (а давление достигает около 3 миллионов атмосфер). Протоны и электроны в нём существуют раздельно и он является хорошим проводником электричества. Мощные электротоки, возникающие в слое металлического водорода, порождают магнитное поле Сатурна (гораздо менее мощное, чем у Юпитера). На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты находится массивное ядро (до 20 земных масс) из камня, железа и, возможно... льда (в области ядра) температура порядка 20000 К. Откуда взяться льду в центре Сатурна, где температура около 20 тыс. градусв? Ведь хорошо знакомая нам кристаллическая форма воды - обыкновенный лед - плавится уже при температуре 0 С при нормальном атмосферном давлении. Еще "нежнее" кристаллические формы аммиака, метана, углекислого газа, которые ученые также называют льдом. Например, твердая углекислота (сухой лед, используемый в различных эстрадных шоу) при нормальных условиях сразу же переходит в газообразное состояние, минуя жидкою стадию. Но одно и то же вещество может образовывать различные кристаллические решетки. В частности, науке известны кристаллические модификации воды, отличающиеся друг от друга не меньше, чем печная сажа - от химически тождественного ей алмаза. Например, так называемый лед VII имеет плотность, почти вдвое превосходящую плотность обычного льда, и при больших давлениях его можно нагревать до нескольких сот градусов! Поэтому не стоит удивляться тому, что в центре Сатурна при давлении в миллионы атмосфер присутствует лед, т.е. в данном случае смесь из кристаллов воды, метана и аммиака.

2.                АТМОСФЕРА Светло-желтый Сатурн внешне выглядит скромнее своего соседа - оранжевого Юпитера. У него нет столь красочного облачного покрова, хотя структура атмосферы почти такая же. Верхние слои атмосферы Сатурна состоят на 93 % из водорода (по объёму) и на 7 % — из гелия. Имеются примеси метана, водяного пара, аммиака и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских, что делает его не таким "цветным" и полосатым. По данным «Вояджеров», на Сатурне дуют самые сильные ветра в Солнечной системе, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветра дуют, в основном, в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что ветры не ограничены слоем верхних облаков, они должны распространяться внутрь, по крайней мере, на 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветра в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы. Южное полушарие Сатурна. "Ураган Дракона", он хорошо виден на этом изображении, полученном в ближней ИК-области (цвета на рисунке искусственные). Исследуя результаты, полученные Кассини, ученые обнаружили, что "Ураган Дракона" является причиной таинственных вспышек в радиодиапазоне. Возможно, мы видим гигантскую грозу на Сатурне, когда радиошум возникает из-за высоковольтных разрядов в молниях Хотя пятна атмосферных вихрей на Сатурне уступают по размерам юпитерианскому Большому Красному Пятну, но и там наблюдаются грандиозные штормы, видимые даже с Земли. Снимки, переданные АМС "Вояджер-1", обнаружили несколько десятков поясов и зон, а также различные конвективные облачные образования: несколько сот светлых пятен диаметром 2000 - 3000 км, коричневые образования овальной формы шириной ~10000 км и красное овальное облачное образование (пятно) у 55° ю. ш. Протяженность красного пятна на Сатурне 11 000 км, по размерам оно примерно равно белым овальным образованиям на Юпитере. Красное пятно на Сатурне относительно стабильно. Оно окружено темным кольцом. Полагают, что оно может представлять собой "верх" конвективной ячейки. Считают, что полосы в атмосфере Сатурна обусловлены температурными перепадами. Число полос достигает нескольких десятков, то есть намного больше, чем наблюдают с Земли, и больше, чем было обнаружено в атмосфере Юпитера. Ученые ожидали найти на Сатурне условия, сравнимые с условиями на Юпитере, поскольку в метеорологических явлениях обеих планет доминирующим фактором является нагрев за счет внутреннего источника тепла, а не поглощения солнечной энергии. Однако атмосферы Сатурна и Юпитера оказались весьма различными. Например, на Юпитере наибольшие скорости ветра зарегистрированы вдоль границ полос, а на Сатурне - вдоль центральной части полос, в то время как на границах полос и зон ветер практически отсутствует. В поясах и зонах атмосферы Юпитера чередуются западные и восточные потоки, которые разделяются областями сдвига. В отличие от этого, на Сатурне обнаружен западный поток в очень широкой полосе от 40° с. ш. до 40° ю. ш. Согласно одной гипотезе, ветры обусловлены циклическим подъемом и опусканием больших облаков аммиака. Южная полярная область Сатурна сравнительно светлая. В северной полярной области обнаружена темная шапка. Возможно, это указывает на сезонные изменения, которых на Сатурне не ожидали. Один профиль температуры, полученный для северного полушария Сатурна, показывает, что темные пятна соответствуют сравнительно высокой температуре, а большие светлые области - несколько более низкой.

coolreferat.com